Extensions 1→N→G→Q→1 with N=C3 and Q=C22.32C24

Direct product G=N×Q with N=C3 and Q=C22.32C24
dρLabelID
C3×C22.32C2448C3xC2^2.32C2^4192,1427

Semidirect products G=N:Q with N=C3 and Q=C22.32C24
extensionφ:Q→Aut NdρLabelID
C31(C22.32C24) = C24.41D6φ: C22.32C24/C2×C22⋊C4C2 ⊆ Aut C348C3:1(C2^2.32C2^4)192,1053
C32(C22.32C24) = C4219D6φ: C22.32C24/C4×D4C2 ⊆ Aut C348C3:2(C2^2.32C2^4)192,1119
C33(C22.32C24) = C24.46D6φ: C22.32C24/C22≀C2C2 ⊆ Aut C348C3:3(C2^2.32C2^4)192,1152
C34(C22.32C24) = C6.422+ 1+4φ: C22.32C24/C4⋊D4C2 ⊆ Aut C348C3:4(C2^2.32C2^4)192,1172
C35(C22.32C24) = C6.462+ 1+4φ: C22.32C24/C4⋊D4C2 ⊆ Aut C348C3:5(C2^2.32C2^4)192,1176
C36(C22.32C24) = C6.562+ 1+4φ: C22.32C24/C22⋊Q8C2 ⊆ Aut C348C3:6(C2^2.32C2^4)192,1203
C37(C22.32C24) = C6.612+ 1+4φ: C22.32C24/C22.D4C2 ⊆ Aut C348C3:7(C2^2.32C2^4)192,1216
C38(C22.32C24) = C4222D6φ: C22.32C24/C4.4D4C2 ⊆ Aut C348C3:8(C2^2.32C2^4)192,1237
C39(C22.32C24) = C4225D6φ: C22.32C24/C422C2C2 ⊆ Aut C348C3:9(C2^2.32C2^4)192,1263


׿
×
𝔽